If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+21x-19=0
a = 4.9; b = 21; c = -19;
Δ = b2-4ac
Δ = 212-4·4.9·(-19)
Δ = 813.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-\sqrt{813.4}}{2*4.9}=\frac{-21-\sqrt{813.4}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+\sqrt{813.4}}{2*4.9}=\frac{-21+\sqrt{813.4}}{9.8} $
| g+94=543 | | -42=7+7v | | 2(j-12)=12 | | 4x^2+40x-21=7 | | 1-p=-11 | | -2(u-4)=-8 | | 8+11x=180 | | 1=6-q | | t+3/2=3 | | 2x3=74 | | x-1/6=x-3/2=-1 | | 4x+8-18=24-2x-2 | | 85=0.6+h | | 8(6+4x=-176 | | S-1.5x=5.2 | | 7-j=1 | | b+12.3=5.7 | | 2(12−w)=−2(w−17)−10 | | -16m=-12 | | d−21.4=87.9d-21.4=87.9 | | 9(u+5)=-2u-32 | | 2.7+x=19.4 | | 12s=3(3s+18) | | -109.3=-184.9-t | | 83=4x+15 | | x-85=137 | | 55=4x+10 | | 7q+88=102 | | 24.5=21.7-n | | 18=4-x | | 23(3)=4x+11 | | -19+7t+15t=17+20t |